A High-Resolution Map of Synteny Disruptions in Gibbon and Human Genomes
نویسندگان
چکیده
Gibbons are part of the same superfamily (Hominoidea) as humans and great apes, but their karyotype has diverged faster from the common hominoid ancestor. At least 24 major chromosome rearrangements are required to convert the presumed ancestral karyotype of gibbons into that of the hominoid ancestor. Up to 28 additional rearrangements distinguish the various living species from the common gibbon ancestor. Using the northern white-cheeked gibbon (2n = 52) (Nomascus leucogenys leucogenys) as a model, we created a high-resolution map of the homologous regions between the gibbon and human. The positions of 100 synteny breakpoints relative to the assembled human genome were determined at a resolution of about 200 kb. Interestingly, 46% of the gibbon-human synteny breakpoints occur in regions that correspond to segmental duplications in the human lineage, indicating a common source of plasticity leading to a different outcome in the two species. Additionally, the full sequences of 11 gibbon BACs spanning evolutionary breakpoints reveal either segmental duplications or interspersed repeats at the exact breakpoint locations. No specific sequence element appears to be common among independent rearrangements. We speculate that the extraordinarily high level of rearrangements seen in gibbons may be due to factors that increase the incidence of chromosome breakage or fixation of the derivative chromosomes in a homozygous state.
منابع مشابه
Molecular refinement of gibbon genome rearrangements.
The gibbon karyotype is known to be extensively rearranged when compared to the human and to the ancestral primate karyotype. By combining a bioinformatics (paired-end sequence analysis) approach and a molecular cytogenetics approach, we have refined the synteny block arrangement of the white-cheeked gibbon (Nomascus leucogenys, NLE) with respect to the human genome. We provide the first detail...
متن کاملTracking the complex flow of chromosome rearrangements from the Hominoidea Ancestor to extant Hylobates and Nomascus Gibbons by high-resolution synteny mapping.
In this study we characterized the extension, reciprocal arrangement, and orientation of syntenic chromosomal segments in the lar gibbon (Hylobates lar, HLA) by hybridization of a panel of approximately 1000 human BAC clones. Each lar gibbon rearrangement was defined by a splitting BAC clone or by two overlapping clones flanking the breakpoint. A reconstruction of the synteny arrangement of the...
متن کاملThe Mysteries of Chromosome Evolution in Gibbons: Methylation Is a Prime Suspect
Dobzhansky and Sturtevant provided the first view of the molecular basis of species identity in their 1938 seminal study classifying the chromosome rearrangements that distinguish two Drosophila species [1]. Decades of study of genome architecture from an evolutionary perspective then followed, enriching our knowledge of developmental genetics, gene regulation, human genetic disorders, and canc...
متن کاملThe UniMarker (UM) method for synteny mapping of large genomes
MOTIVATION Synteny mapping, or detecting regions that are orthologous between two genomes, is a key step in studies of comparative genomics. For completely sequenced genomes, this is increasingly accomplished by whole-genome sequence alignment. However, such methods are computationally expensive, especially for large genomes, and require rather complicated post-processing procedures to filter o...
متن کاملSequencing human-gibbon breakpoints of synteny reveals mosaic new insertions at rearrangement sites.
The gibbon genome exhibits extensive karyotypic diversity with an increased rate of chromosomal rearrangements during evolution. In an effort to understand the mechanistic origin and implications of these rearrangement events, we sequenced 24 synteny breakpoint regions in the white-cheeked gibbon (Nomascus leucogenys, NLE) in the form of high-quality BAC insert sequences (4.2 Mbp). While there ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS Genetics
دوره 2 شماره
صفحات -
تاریخ انتشار 2006